2 [Prologue: Software Architectures and Documentation

R —

Many projects make the
mistake of trying to
impose a single parti-
tion in multiple compo-
nent domains, such as
equating threads with
objects, which are
equated with modules,
which in turn are
equated with files. Such
an approach never suc-
ceeds fully, and adjust-
ments eventually must
be made, but the dam-
age of the initial intent is
often hard to repair. This
invariably leads to prob-
lems in development
and occasionally in final
products.

—Jazayeri, Ran, and
van der Linden (2000,
pp. 16-17)

tem, the more critical is this partitioning—and hence, archi-
tecture. And as we will see, the more demanding those quality
attributes are, the more critical the architecture is.

A single system is almost inevitably partitioned simulta-
neously in a number of different ways. Each partitioning
results in the creation of an architectural structure: different
sets of parts and different relations among the parts. Each is
the result of careful design, carried out to satisfy the driving
quality attribute requirements and the most important busi-
ness goals behind the system.

Architecture is what makes the sets of parts work together as
a coherent and successful whole. Architecture documentation
help architects make the right decisions; it tells developers how
to carry them out; and it records those decisions to give a sys-
tem’s [uture carctakers insight into the architect’s solution.

P1.2 Architecture and Quality Attributes

For nearly all systems, quality attributes such as performance,
reliability, security, and modifiability are every bit as important
as making sure that the software computes the correct answer.
A software system’s ability to produce correct results isn’t help-
ful if it takes too long doing it, or the system doesn’t stay up
long enough to deliver it, or the system reveals the results to
your competition or your enemy. Architecture is where these
concerns are addressed. For example:

¢ If you require high performance, you need to

— Exploit potential parallelism by decomposing the work
into cooperating or synchronizing processes.

— Manage the interprocess and network communication
volume and data access frequencies.

— Be able to estimate expected latencies and throughputs.
— Identify potential performance bottlenecks.

¢ If your system needs high accuracy, you must pay attention
to how the data elements are defined and used and how
their values flow throughout the system.
e If security is important, you need to
— Legislate usage relationships and communication restric-
tions among the parts.
— Identify parts of the system where an unauthorized intru-
sion will do the most damage.

— Possibly introduce special elements that have earned a
high degree of trust.

P.1 A Short Overview of Software Architecture 1 3

¢ If you need to support modifiability and portability, you
must carefully separate concerns among the parts of the sys-
tem, so that when a change affects one element, that change
does not ripple across the system.

¢ Ifyou want to deploy the system incrementally, by releasing
successively larger subsets, you have to keep the dependency
relationships among the pieces untangled, to avoid the
“nothing works until everything works” syndrome.

The solutions to these concerns are purely architectural in
nature. It is up to architects to find those solutions and com-
municate them effectively to those who will carry them out.
Architecture documentation has three obligations related to
quality attributes. First, it should indicate which quality attribute
requirements drove the design. Second, it should capture the
solutions chosen to satisfy the quality attribute requirements.
Finally, it should capture a convincing argument why the solu-
tions provide the necessary quality attributes. The goal is to
capture enough information so that the architecture can be
analyzed to see if, in fact, the system (s) derived from it will pos-
sess the necessary quality attributes.

What Is Software Architecture?

If we are to agree on what it means to document a soft-
ware architecture, we should establish a common basis
for what it is we’re documenting. No universal definition
of software architecture exists. The Software Engineering
Institute’s Web site collects definitions from the literature
and from practitioners around the world; so far, more
than 150 definitions have been collected.

It seems that new fields try to nail down standard defini-
tions or their key terms as soon as they can. As the field
matures, basic concepts become more important than
ironclad definitions, and this urge seems to fade. When
object-oriented development was in its infancy, you
could bring any OO meeting to a screeching halt by put-
ting on your best innocent face and asking, “What
exactly is an object?” This largely ended when people
realized that the scatter plot of definitions had an appar-
ent (if unarticulated) centroid, from which very useful
progress could be made. Sometimes “close enough” is,
well, close enough.

Chapter 10 will show
where in the documen-
tation to record the driv-
ing quality attribute
requirements, the solu-
tions chosen, and the
rationale for those
solutions.

Software architecture is
the set of design deci-
sions which, if made
incorrectly, may cause
your project to be
cancelled.

—Eoin Woods (SEI
2010)

T —

You can read the SEI
collection of definitions,
or contribute your own,
at www.sei.cmu.edu/
architecture.

